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Summary

• Quarkonium as a probe for the onset of deconfinement;

• Information provided by lattice-QCD calculations and

experimental data;

• The object of our investigation:

in-medium QQ propagator in the complex-time plane;

• Basic questions we want to answer;

• An explicit example: QQ in a hot QED plasma;

• Some ideas for future work.
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Quarkonium as a probe for
the onset of deconfinement
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Original idea by Matsui and Satz a

⇒Statement: the J/Ψ anomalous suppression in high energy AA

collisions represents an unambiguous signature of deconfinement.

⇒Underlying assumptions:

•The J/Ψ are produced in the very early stage of the collision

τform ≈ 0.3fm/c;

•The medium resulting from the HIC thermalizes in a time

τtherm ≈ 0.5 ÷ 1fm/c;

•Crossing a deconfined medium the cc̄ bound states tend to melt

(Debye screening of the Coulomb interaction):

V (r) ∼ −
α

r
→ −

α

r
e−mDr

•The heavy quarks hadronize by combining with light quarks only.
aT. Matsui and H. Satz, PLB 178 (1986).
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Is it possible to make this picture more quantitative through
a first-principle (i.e. starting from LQCD) calculation?

A possible answer: take advantage of the results provided
by the lattice-QCD simulations.
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Quarkonium in hot-QCD:
what can lattice simulations

tell us?

• Heavy-quark free-energy calculations:

evaluate ∆F occurring once a QQ pair is placed in a

thermal bath of gluons and light quarks;

• Meson Spectral Function reconstruction:

look for resonance-peaksa in the spectral densities

extracted from in-medium quarkonium propagators.

aS. Datta, F. Karsch, P. Petreczky and I. Wetzorke,

Phys. Rev. D 69, 094507 (2004)
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QQ free-energy a

e
−β∆F

QQ
(x−y,T )

∼ 〈χ(β,y)ψ(β,x)ψ†(0,x)χ†(0,y)〉
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Can one exploit this information to build an effective QQ potential?

state J/ψ χc ψ′

Td/Tc (Veff ≡ F1) 1.1 0.74 0.1-0.2

Td/Tc (Veff ≡ U1) 1.78-1.92 1.14-1.15 1.11-1.12

aO. Kaczmarek and F. Zantow, PoS LAT2005:192 (2006).
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Meson Spectral Functions

⇒One usually measures the imaginary-time propagator

GM (τ) ≡ 〈JM (τ)J†
M (0)〉

of a meson produced by the current

JM (τ) ≡ q(τ)ΓMq(τ)

⇒From GM (τ) the MSF has to be reconstructed :

GM (τ) =

∫ ∞

0

dω σM (ω)
︸ ︷︷ ︸

MSF

cosh(ω(τ − β/2))

sinh(βω/2)

NB: Typically GM (τ) is known for a quite limited set of points (<∼50)

→ problems in inverting the above transform.
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⇒What is found through a MEM procedurea,b?
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The vector (left) and pseudoscalar (right) MSFs display well-defined

peaks up to temperature T ∼2Tc.

aG. Aarts et al., arXiv:0705.2198 [hep-lat]
bA. Jakovac et al., Phys.Rev. D75 (2007) 014506.
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Experimental data
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Charmonia production

... in hadronic collisions
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... in AA collisions:

sequential suppression scenario

As the centrality of the collision increases one has first the suppression of

the feed-down contribution (Ψ′ and χc). Then also the melting of the

direct J/Ψ sets in.

⇒... at SPS (Na50 and Na60) a
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The direct contribution seems to survive!
aR. Arnaldi, NPA774:711-714,2006.



'

&

$

%

⇒... at RHIC (PHENIX)

From sequential suppression + hydro evolution one gets:
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“It is noticeable that the RHIC data analyzed with the state-of-the-art

hydrodynamics leads to a rather stable value for the melting temperature of

the J/Ψ to be around T/Tc ' 2.” a

aT. Gunji, H. Hamagaki, T. Hatsuda and T. Hirano,

Phys. Rev. C 76, 051901 (2007).
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Some open problems: a brief summary

• Potential models: which effective potential from the QQ

free-energy data?

• MSF: in principle would contain the full information on the

in-medium quarkonium properties, BUT large uncertainties from

inverting the transform.

• Is it possible to establish a link between screened potential

models and spectral studiesa?

aSee e.g. the works by A. Mocsy and P. Petreczky and the talk by W. Alberico

in this workshop.
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The basic object
of our study

G>(t,r1; t,r2|0,r
′
1; 0,r

′
2)≡〈χ(t,r2)ψ(t,r1)

︸ ︷︷ ︸

JM (t)

ψ†(0,r′
1)χ

†(0,r′
2)

︸ ︷︷ ︸

J
†
M

(0)

〉
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• Spectral decomposition:

G>
M (t) = Z−1

∑

n

e−βEn〈n|JM (t)J†
M (0)|n〉

= Z−1
∑

n

e−βEn

∑

m

ei(En−Em)t|〈m|J†
M (0)|n〉|2,

– G>(t) is an analytic function in the strip −β< Imt< 0 =⇒

unified description of real and imaginary-time propagation;

– QQ pair: external probe placed in a hot/dense medium of

light particles =⇒ {|n〉} do not contain heavy quarks.

• One gets the excitations (poles of the retarded propagator) which

propagate in the medium

ρM (ω) ≡ G>(ω) =⇒ GR
M (ω) = −

∫
dq0

2π

ρM (q0)

ω − q0 + iη
.
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A recent approacha

⇒Evaluate perturbatively

G>
M=∞(t) = G(0)>(t) +G(2)>(t) + . . .

⇒Ansatz: G>
M=∞(t) is solution of

(i∂t − Veff )G>
M=∞(t) = 0

⇒Identify the LO perturbative contribution to the effective potential:

Veff = V
(2)
eff + . . .

⇒Get G>(t) from the solution of

(i∂t − T − V
(2)
eff )G>(t) = 0

aM. Laine et al.
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The basic questions we want
to answer:

• Does G>(t) obey a closed Schrödinger equation at finite

T? i.e. is it possible to define an effective potential?

• What’s the link of the effective potential with the QQ

free-energy?

• Is it possible to include the effect of collisions in a

consistent way?
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Experimental relevance
Beside the issue of the J/Ψ suppression the problem of “which”

in-medium effective interaction between the color charges is of

extreme importance to provide a picture of the matter produced at

RHIC. See for instance the proposals to explain

• sQGP (λmfp � L) arising from the huge set of colored loosely

bound states above Tc (Shuryak);

• heavy-quark thermalization through s-wave resonant scattering

(Rapp).
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QED toy-model
A QQ pair in a plasma of

photons, electrons and positrons

LM=∞
QED = Lem + Llight + ψ†i(∂0 − igA0)ψ

︸ ︷︷ ︸

heavy Q

+χ†i(∂0 + igA0)χ
︸ ︷︷ ︸

heavy Q
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The strategy

• Consider the QQ propagation in a given background

configuration of the gauge-field Aµ

GA(t, r1; t, r2|0, r
′
1; 0, r

′
2) = δ(r1 − r

′
1)δ(r2 − r

′
2)×

× exp

„

ig

Z t

0

dt′A0(r1, t
′)

«

exp

„

−ig

Z t

0

dt′A0(r2, t
′)

«

• Average over the gauge-field configuration with an action

accounting for thermal effects

G>(t, r1; t, r2|0, r
′
1; 0, r

′
2) = Z−1

Z

[DA]GA(t, r1; t, r2|0, r
′
1; 0, r

′
2) e

iS[A]

Which is the action to employ to weight the field configurations?
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The HTL effective action I

⇒Relevant momentum scales in a ultra-relativistic plasma:

• Hard (plasma particles):

E ∼ T 4 N ∼ T 3 =⇒ K ∼ T ;

• Soft (collective modes): K ∼ gT .

⇒Mean Free Path of a plasma particle:

• For hard momentum exchange: λhard
mfp ∼ 1/g4T ,

• For soft momentum exchange: λsoft
mfp ∼ 1/g2T .

For weak coupling one has λsoft
mfp � λhard

mfp , i.e.

most of the scattering processes involve small momentum

transfer.
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The HTL effective action II

• Assume the interaction being mostly carried by soft photons

(Q∼gT�T )

• The propagation of soft photons is dressed by the

interactions with the light fermions of the thermal bath

which are hard (K∼T )

µ νQ Q

K − Q

K

hard

hard

soft soft
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The HTL effective action III

t 0 (C  )+

β

Im t

Re t

it 0 -

(C  )
(C  )

-
0

t f

⇒The photon propagator in the complex-time plane:

iDµν(x− y) ≡ θC(x0 − y0)〈Aµ(x)Aν(y)〉 + θC(y0 − x0)〈Aν(y)Aµ(x)〉

⇒The HTL effective action:

SHTL
C [A] =

1

2

∫

C

d4x

∫

C

d4y Aµ(x)
(
D−1

)HTL

µν
(x− y)Aν(y).

It is gaussian!
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Performing the functional integral

⇒Being the action gaussian...

G>(t, r1; t, r2|0, r
′
1; 0, r

′
2) = δ(r1 − r

′
1)δ(r2 − r

′
2)G(t, r1 − r2),

where

G(t, r1 − r2) = exp

[

−
i

2

∫

C

d4x

∫

C

d4y Jµ(x)DHTL
µν (x− y)Jν(y)

]

with Jµ(x) the QQ current.

Unified description of real and imaginary-time propagation!
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In terms of Feynman diagrams...
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Real-time QQ propagator

⇒QQ current non-vanishing along C+:

G(t, r1 − r2) = exp

"

−
i

2

Z

C+

d4x

Z

C+

d4y Jµ(x)Dµν(x− y)Jν(y)

#

with

Jµ(z) = δµ0θ(z0)θ(t− z0)[−gδ(z − r1) + gδ(z − r2)]

⇒One gets:

G(t, r1−r2)=exp

»

−2ig2

Z
dω

2π

Z
dq

(2π)3
1 − cos(ωt)

ω2

“

1−eiq·(r1−r2)
”

D00(ω, q)

–
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⇒Large time behavior

• QQ propagator

G(t, r1−r2) ∼
t→∞

exp[−iVeff(r1 − r2)t]

• Temporal evolution equation (∼ Schrödinger!)

lim
t→+∞

[i∂t−Veff(r1 − r2)]G(t, r1 − r2) = 0

where:

Veff(r1 − r2) ≡ g2

Z
dq

(2π)3

“

1 − eiq·(r1−r2)
”

D00(ω=0, q)

= g2

Z
dq

(2π)3

“

1 − eiq·(r1−r2)
” h 1

q2 +m2
D

| {z }

screening

−i
πm2

DT

|q|(q2 +m2
D)2

| {z }

collisions

i

= −
g2

4π

»

mD +
e−mDr

r

–

− i
g2T

4π
φ(mDr)
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⇒In terms of Feynman diagrams the large time behavior can be

described as a ladder of instantaneous effective interactions:
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(ε1, ~p1) (ε2, ~p2)

(ε3, ~p3)(M,~0)

(q0, ~q)

⇒Interpretation of the damping: interaction rate of a heavy fermion

in the thermal bath

Γ(M) = 2
1

2M

Z

p1

Z

p2

Z

p3

(2π)4δ(4)(P + P1 − P2 − P3)×

× [n1(1 − n2)(1 − n3) + (1 − n1)n2n3] |M|2

In the M → ∞ limit:

Γ(∞) = g2T

Z
dq

(2π)3
πm2

D

(q2 +m2
D)2q

NB The resulting width in G>(ω) should be interpreted as a collisional

broadening of the state.
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⇒An example: a µ+µ− pair in a hot QED plasma.

r = 〈r〉1S =
3

2
aBohr ≡

3

2

1

µαQED
≈ 3.89 MeV−1 ,
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V
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⇒The imaginary-part of Veff as a function of the QQ separation:
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rmD
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1

Φ(rmD)

For very small separation the QQ pair is seen as a neutral object and

it does not interact with the particles of the medium.
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Real-time propagation: what we learnt

In the case of M=∞ and soft-photon exchange:

• Exact expression for G>(t);

• Closed temporal evolution equation for G>(t);

• From the large-time behavior → effective potential

– Real part: screening,

– Imaginary part: collisional damping;

• Connection of the imaginary part with the interaction rate.
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Imaginary-time QQ propagator

⇒Analyticity of G>(t) → simply set t=−iτ with τ ∈ [0, β]

G(−iτ, r1−r2) = exp

»

g2

Z τ

0

dτ ′
Z τ

0

dτ ′′
Z

dq

(2π)3

“

1−eiq·(r1−r2)
”

∆00(τ
′−τ ′′, q)

–

⇒Propagation till τ=β:

G(−iβ, r1−r2) = exp



−βg2

Z
dq

(2π)3

“

1−eiq·(r1−r2)
” 1

q2 +m2
D

ff

Since:

G(−iβ, r1−r2) = exp
`
−β∆FQQ(r, T )

´

One gets the QQ free-energy:

∆FQQ(r, T ) = −
g2mD

4π
−
g2

4π

e−mDr

r
,

It coincides with the real part of the effective potential !
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Imaginary-time propagation: what we learnt

• G>(t = −iτ) follows simply from the analyticity;

• The free-energy coincides with the real part of the effective

potential.

This relies essentially on the analyticity properties of G>(t).

Hence we think the argument being very general, not specific of

the model we investigated ;

• No information on the imaginary-part can be obtained from

G>(t = −iβ) (i.e. what is usually evaluated on the lattice).
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Have we answered to the
initial questions?
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Let us summarize...

• Under some assumptions (QQ external probes, effective

interaction accounting for medium effects, M = ∞) G>(t) obeys

a closed equation. Is it possible to relax the above constraints?

• Large-time behavior governed by the static limit of the effective

interaction

• Analyticity of G>(t) allows a unified treatment of real and

imaginary-time propagation;

• The real part of the effective potential has to be identified

with the free-energy;

• Imaginary part of the effective potential arises naturally.
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The finite mass case:
a possible strategy
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The general idea

Treat the heavy fermion propagating in a thermal bath as a point-like

particle in Quantum-Mechanics. Hence:

• Sum over all the possible trajectories in a given background field:

〈xfτf |xiτi〉=

Z
x(τf )=xf

x(τi)=xi

[Dx(τ ′)] exp

»

−

Z τf

τi

dτ ′
„

1

2
M ẋ

2 + V (x)

«–

,

where V (x)≡gΦ(x) (scalar interaction) and ẋ≡dx/dτ ′.

• Average over all the possible field configurations (the action

accounting for medium effects)

G>(−iτ, r1|0, r
′
1)=Z−1

Z
z1(τ)=r1

z1(0)=r
′

1

[Dz1]

Z

[DΦ] exp

»

−

Z τ

0

dτ ′
1

2
M ż1

2

–

×

× exp

»

−g

Z τ

0

dτ ′Φ(t′, z1(t
′))

–

e−Seff
E [Φ]
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For a gaussian effective action...

⇒Single particle propagator:

G>(−iτ, r1|0, r
′
1)=

Z
z(τ)=r1

z(0)=r
′

1

[Dz]exp

»

−

Z τ

0

dτ ′
1

2
M ż

2

–

×

× exp

»
g2

2

Z τ

0

dτ ′
Z τ

0

dτ ′′∆(τ ′ − τ ′′, z(τ ′) − z(τ ′′))

–

,

with ∆(τ, z) the Matsubara propagator of the exchanged meson.

NB Imaginary-time propagation in view of the numerical evaluation

of the path-integral!



'

&

$

%

⇒Two-particle propagator:

G>(−iτ, r1;−iτ, r2|0, r
′
1, 0, r

′
2)=

Z
r1

r
′

1

[Dz1]

Z
r2

r
′

2

[Dz2]×

× exp

»

−

Z τ

0

dτ ′
„

1

2
M ż1

2−
g2

2

Z τ

0

dτ ′′∆(τ ′−τ ′′, z1(τ
′)−z1(τ

′′))

«–

×

× exp

»

−

Z τ

0

dτ ′
„

1

2
M ż2

2−
g2

2

Z τ

0

dτ ′′∆(τ ′−τ ′′, z2(τ
′)−z2(τ

′′))

«–

×

× exp

»

g2

Z τ

0

dτ ′
Z τ

0

dτ ′′∆(τ ′−τ ′′,z1(τ
′)−z2(τ

′′))

–

.
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Possible investigations

• Evaluating G>(−iτ) for a huge set of points in view a MEM

reconstruction of the spectral function

G>(−iτ) =

Z +∞

−∞

dω

2π
e−ωτG>(ω) ≡

Z +∞

−∞

dω

2π
e−ωτρ(ω)

with ρ(ω) having support starting from ω ∼ 2M .

• Comparison with other strategies

– Finite temperature QQ “wave-functions” (Umeda)

φ(τ,x) ≡ G(τ,x)/G(τ,0)

G(τ,x) ≡
X

z

〈χ(z + x,−iτ)ψ(z,−iτ)J†(τ = 0)〉

– Screened potential-model calculations.


